Calabi-Yau Varieties: Arithmetic, Geometry and Physics
Lecture Notes on Concentrated Graduate Courses
This volume presents a lively introduction to the rapidly developing and vast research areas surrounding Calabi–Yau varieties and string theory. With its coverage of the various perspectives of a wide area of topics such as Hodge theory, Gross–Siebert program, moduli problems, toric approach, and arithmetic aspects, the book gives a comprehensive overview of the current streams of mathematical research in the area.The contributions in this book are based on lectures that took place during workshops with the following thematic titles: “Modular Forms Around String Theory,” “Enumerative Geometry and Calabi–Yau Varieties,” “Physics Around Mirror Symmetry,” “Hodge Theory in String Theory.” The book is ideal for graduate students and researchers learning about Calabi–Yau varieties as well as physics students and string theorists who wish to learn the mathematics behind these varieties.
ISBN: | 9781493928293 |
---|---|
Sprache: | Englisch |
Seitenzahl: | 547 |
Produktart: | Gebunden |
Herausgeber: | Laza, Radu Schütt, Matthias Yui, Noriko |
Verlag: | Springer US |
Veröffentlicht: | 30.08.2015 |
Untertitel: | Lecture Notes on Concentrated Graduate Courses |
Schlagworte: | Donaldson–Thomas invariants Gromov–Witten theory Gross–Siebert program Hodge theory mirror symmetry moduli problem string theory toric approach |
Anmelden