Herzlich Willkommen!
Optimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics. In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems. Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond.
Autor: Kinky
ISBN: 9783384275837
Sprache: Englisch
Seitenzahl: 338
Produktart: Kartoniert / Broschiert
Verlag: tredition
Veröffentlicht: 01.07.2024
Schlagworte: Algorithmic Efficiency Deep Learning Gradient Descent Hyperparameter Machine Learning Metrics Optimization Scalability Variants

0 von 0 Bewertungen

Durchschnittliche Bewertung von 0 von 5 Sternen

Bewerten Sie dieses Produkt!

Teilen Sie Ihre Erfahrungen mit anderen Kunden.