Herzlich Willkommen!
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces.
Autor: Getz, Jayce Goresky, Mark
ISBN: 9783034803502
Sprache: Englisch
Seitenzahl: 258
Produktart: Gebunden
Verlag: Springer Basel
Veröffentlicht: 30.03.2012
Schlagworte: Fourier coefficients Hecke operators Hilbert modular varieties automorphic forms intersection cohomology

0 von 0 Bewertungen

Durchschnittliche Bewertung von 0 von 5 Sternen

Bewerten Sie dieses Produkt!

Teilen Sie Ihre Erfahrungen mit anderen Kunden.


Das könnte Sie auch interessieren