Herzlich Willkommen!
Deutschland
  • Deutschland
  • Vereinigtes Königreich
  • Griechenland
  • Irland
  • Island
  • Italien
  • Japan
  • Kanada
  • Luxemburg
  • Namibia
  • Niederlande
  • Norwegen
  • Österreich
  • Portugal
  • Schweden
  • Schweiz
  • Spanien
  • Vereinigte Staaten von Amerika
  • Liechtenstein
  • Arabische Emirate
  • Polen
  • Ungarn
  • Türkei
  • Tschechische Republik
  • Slowakei
  • Rumänien
  • Brasilien
  • Israel
  • Australien
  • Belgien
  • Dänemark
  • Finnland
  • Frankreich
  • Bulgarien
  • Estland
  • Kroatien
  • Lettland
  • Litauen
  • Malta
  • Slowenien
  • Zypern
  • Afghanistan
  • Åland
  • Albanien
  • Algerien
  • Amerikanisch-Samoa
  • Andorra
  • Angola
  • Anguilla
  • Antarktika
  • Antigua und Barbuda
  • Argentinien
  • Armenien
  • Aruba
  • Aserbaidschan
  • Bahamas
  • Bahrain
  • Bangladesch
  • Barbados
  • Weißrussland
  • Belize
  • Benin
  • Bermuda
  • Bhutan
  • Bolivien
  • Bonaire, Sint Eustatius und Saba
  • Bosnien und Herzegowina
  • Botswana
  • Bouvetinsel
  • Britisches Territorium im Indischen Ozean
  • Kleinere Inselbesitzungen der Vereinigten Staaten
  • Britische Jungferninseln
  • Amerikanische Jungferninseln
  • Brunei
  • Burkina Faso
  • Burundi
  • Kambodscha
  • Kamerun
  • Kap Verde
  • Kaimaninseln
  • Zentralafrikanische Republik
  • Tschad
  • Chile
  • China
  • Weihnachtsinsel
  • Kokosinseln
  • Kolumbien
  • Union der Komoren
  • Kongo
  • Kongo (Dem. Rep.)
  • Cookinseln
  • Costa Rica
  • Kuba
  • Curaçao
  • Dschibuti
  • Dominica
  • Dominikanische Republik
  • Ecuador
  • Ägypten
  • El Salvador
  • Äquatorial-Guinea
  • Eritrea
  • Äthiopien
  • Falklandinseln
  • Färöer-Inseln
  • Fidschi
  • Französisch Guyana
  • Französisch-Polynesien
  • Französische Süd- und Antarktisgebiete
  • Gabun
  • Gambia
  • Georgien
  • Ghana
  • Gibraltar
  • Grönland
  • Grenada
  • Guadeloupe
  • Guam
  • Guatemala
  • Guernsey
  • Guinea
  • Guinea-Bissau
  • Guyana
  • Haiti
  • Heard und die McDonaldinseln
  • Staat Vatikanstadt
  • Honduras
  • Hong Kong
  • Indien
  • Indonesien
  • Elfenbeinküste
  • Iran
  • Irak
  • Insel Man
  • Jamaika
  • Jersey
  • Jordanien
  • Kasachstan
  • Kenia
  • Kiribati
  • Kuwait
  • Kirgisistan
  • Laos
  • Libanon
  • Lesotho
  • Liberia
  • Libyen
  • Macao
  • Mazedonien
  • Madagaskar
  • Malawi
  • Malaysia
  • Malediven
  • Mali
  • Marshallinseln
  • Martinique
  • Mauretanien
  • Mauritius
  • Mayotte
  • Mexiko
  • Mikronesien
  • Moldawie
  • Monaco
  • Mongolei
  • Montenegro
  • Montserrat
  • Marokko
  • Mosambik
  • Myanmar
  • Nauru
  • Népal
  • Neukaledonien
  • Neuseeland
  • Nicaragua
  • Niger
  • Nigeria
  • Niue
  • Norfolkinsel
  • Nordkorea
  • Nördliche Marianen
  • Oman
  • Pakistan
  • Palau
  • Palästina
  • Panama
  • Papua-Neuguinea
  • Paraguay
  • Peru
  • Philippinen
  • Pitcairn
  • Puerto Rico
  • Katar
  • Republik Kosovo
  • Réunion
  • Russland
  • Ruanda
  • Saint-Barthélemy
  • Sankt Helena
  • St. Kitts und Nevis
  • Saint Lucia
  • Saint Martin
  • Saint-Pierre und Miquelon
  • Saint Vincent und die Grenadinen
  • Samoa
  • San Marino
  • São Tomé und Príncipe
  • Saudi-Arabien
  • Senegal
  • Serbien
  • Seychellen
  • Sierra Leone
  • Singapur
  • Sint Maarten (niederl. Teil)
  • Salomonen
  • Somalia
  • Republik Südafrika
  • Südgeorgien und die Südlichen Sandwichinseln
  • Südkorea
  • Südsudan
  • Sri Lanka
  • Sudan
  • Suriname
  • Svalbard und Jan Mayen
  • Swasiland
  • Syrien
  • Taiwan
  • Tadschikistan
  • Tansania
  • Thailand
  • Timor-Leste
  • Togo
  • Tokelau
  • Tonga
  • Trinidad und Tobago
  • Tunesien
  • Turkmenistan
  • Turks- und Caicosinseln
  • Tuvalu
  • Uganda
  • Ukraine
  • Uruguay
  • Usbekistan
  • Vanuatu
  • Venezuela
  • Vietnam
  • Wallis und Futuna
  • Westsahara
  • Jemen
  • Sambia
  • Simbabwe
The present book is about the Askey scheme and the q-Askey scheme, which are graphically displayed right before chapter 9 and chapter 14, respectively. The fa- lies of orthogonal polynomials in these two schemes generalize the classical orth- onal polynomials (Jacobi, Laguerre and Hermite polynomials) and they have pr- erties similar to them. In fact, they have properties so similar that I am inclined (f- lowing Andrews & Askey [34]) to call all families in the (q-)Askey scheme classical orthogonal polynomials, and to call the Jacobi, Laguerre and Hermite polynomials very classical orthogonal polynomials. These very classical orthogonal polynomials are good friends of mine since - most the beginning of my mathematical career. When I was a fresh PhD student at the Mathematical Centre (now CWI) in Amsterdam, Dick Askey spent a sabbatical there during the academic year 1969–1970. He lectured to us in a very stimulating wayabouthypergeometricfunctionsandclassicalorthogonalpolynomials. Evenb- ter, he gave us problems to solve which might be worth a PhD. He also pointed out to us that there was more than just Jacobi, Laguerre and Hermite polynomials, for instance Hahn polynomials, and that it was one of the merits of the Higher Transc- dental Functions (Bateman project) that it included some newer stuff like the Hahn polynomials (see [198, §10. 23]).

0 von 0 Bewertungen

Durchschnittliche Bewertung von 0 von 5 Sternen

Bewerten Sie dieses Produkt!

Teilen Sie Ihre Erfahrungen mit anderen Kunden.


Das könnte Sie auch interessieren

Verwandte Artikel