Herzlich Willkommen!
Deutschland
  • Deutschland
  • Vereinigtes Königreich
  • Griechenland
  • Irland
  • Island
  • Italien
  • Japan
  • Kanada
  • Luxemburg
  • Namibia
  • Niederlande
  • Norwegen
  • Österreich
  • Portugal
  • Schweden
  • Schweiz
  • Spanien
  • Vereinigte Staaten von Amerika
  • Liechtenstein
  • Arabische Emirate
  • Polen
  • Ungarn
  • Türkei
  • Tschechische Republik
  • Slowakei
  • Rumänien
  • Brasilien
  • Israel
  • Australien
  • Belgien
  • Dänemark
  • Finnland
  • Frankreich
  • Bulgarien
  • Estland
  • Kroatien
  • Lettland
  • Litauen
  • Malta
  • Slowenien
  • Zypern
  • Afghanistan
  • Åland
  • Albanien
  • Algerien
  • Amerikanisch-Samoa
  • Andorra
  • Angola
  • Anguilla
  • Antarktika
  • Antigua und Barbuda
  • Argentinien
  • Armenien
  • Aruba
  • Aserbaidschan
  • Bahamas
  • Bahrain
  • Bangladesch
  • Barbados
  • Weißrussland
  • Belize
  • Benin
  • Bermuda
  • Bhutan
  • Bolivien
  • Bonaire, Sint Eustatius und Saba
  • Bosnien und Herzegowina
  • Botswana
  • Bouvetinsel
  • Britisches Territorium im Indischen Ozean
  • Kleinere Inselbesitzungen der Vereinigten Staaten
  • Britische Jungferninseln
  • Amerikanische Jungferninseln
  • Brunei
  • Burkina Faso
  • Burundi
  • Kambodscha
  • Kamerun
  • Kap Verde
  • Kaimaninseln
  • Zentralafrikanische Republik
  • Tschad
  • Chile
  • China
  • Weihnachtsinsel
  • Kokosinseln
  • Kolumbien
  • Union der Komoren
  • Kongo
  • Kongo (Dem. Rep.)
  • Cookinseln
  • Costa Rica
  • Kuba
  • Curaçao
  • Dschibuti
  • Dominica
  • Dominikanische Republik
  • Ecuador
  • Ägypten
  • El Salvador
  • Äquatorial-Guinea
  • Eritrea
  • Äthiopien
  • Falklandinseln
  • Färöer-Inseln
  • Fidschi
  • Französisch Guyana
  • Französisch-Polynesien
  • Französische Süd- und Antarktisgebiete
  • Gabun
  • Gambia
  • Georgien
  • Ghana
  • Gibraltar
  • Grönland
  • Grenada
  • Guadeloupe
  • Guam
  • Guatemala
  • Guernsey
  • Guinea
  • Guinea-Bissau
  • Guyana
  • Haiti
  • Heard und die McDonaldinseln
  • Staat Vatikanstadt
  • Honduras
  • Hong Kong
  • Indien
  • Indonesien
  • Elfenbeinküste
  • Iran
  • Irak
  • Insel Man
  • Jamaika
  • Jersey
  • Jordanien
  • Kasachstan
  • Kenia
  • Kiribati
  • Kuwait
  • Kirgisistan
  • Laos
  • Libanon
  • Lesotho
  • Liberia
  • Libyen
  • Macao
  • Mazedonien
  • Madagaskar
  • Malawi
  • Malaysia
  • Malediven
  • Mali
  • Marshallinseln
  • Martinique
  • Mauretanien
  • Mauritius
  • Mayotte
  • Mexiko
  • Mikronesien
  • Moldawie
  • Monaco
  • Mongolei
  • Montenegro
  • Montserrat
  • Marokko
  • Mosambik
  • Myanmar
  • Nauru
  • Népal
  • Neukaledonien
  • Neuseeland
  • Nicaragua
  • Niger
  • Nigeria
  • Niue
  • Norfolkinsel
  • Nordkorea
  • Nördliche Marianen
  • Oman
  • Pakistan
  • Palau
  • Palästina
  • Panama
  • Papua-Neuguinea
  • Paraguay
  • Peru
  • Philippinen
  • Pitcairn
  • Puerto Rico
  • Katar
  • Republik Kosovo
  • Réunion
  • Russland
  • Ruanda
  • Saint-Barthélemy
  • Sankt Helena
  • St. Kitts und Nevis
  • Saint Lucia
  • Saint Martin
  • Saint-Pierre und Miquelon
  • Saint Vincent und die Grenadinen
  • Samoa
  • San Marino
  • São Tomé und Príncipe
  • Saudi-Arabien
  • Senegal
  • Serbien
  • Seychellen
  • Sierra Leone
  • Singapur
  • Sint Maarten (niederl. Teil)
  • Salomonen
  • Somalia
  • Republik Südafrika
  • Südgeorgien und die Südlichen Sandwichinseln
  • Südkorea
  • Südsudan
  • Sri Lanka
  • Sudan
  • Suriname
  • Svalbard und Jan Mayen
  • Swasiland
  • Syrien
  • Taiwan
  • Tadschikistan
  • Tansania
  • Thailand
  • Timor-Leste
  • Togo
  • Tokelau
  • Tonga
  • Trinidad und Tobago
  • Tunesien
  • Turkmenistan
  • Turks- und Caicosinseln
  • Tuvalu
  • Uganda
  • Ukraine
  • Uruguay
  • Usbekistan
  • Vanuatu
  • Venezuela
  • Vietnam
  • Wallis und Futuna
  • Westsahara
  • Jemen
  • Sambia
  • Simbabwe
Reviews of the first edition (2009):   »Perfectly fits introductory modeling courses [...] and is an enjoyable reading in the first place. Highly recommended [...]« Zentralblatt MATH, European Mathematical Society, 2009   »This book differs from almost all other available modeling books in that [the authors address] both mechanistic and statistical models as well as 'hybrid' models. [...] The modeling range is enormous.« SIAM Society of Industrial and Applied Mathematics, USA, 2011   This completely revised and substantially extended second edition answers the most important questions in the field of modeling: What is a mathematical model? What types of models do exist? Which model is appropriate for a particular problem? What are simulation, parameter estimation, and validation? What kind of mathematical problems appear and how can these be efficiently solved using professional free of charge open source software? The book addresses undergraduates and practitioners alike. Although only basic knowledge of calculus and linear algebra is required, the most important mathematical structures are discussed in sufficient detail, ranging from statistical models to partial differential equations and accompanied by examples from biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical, and process engineering. About 200 pages of additional material include a unique chapter on virtualization, Crash Courses on the data analysis and programming languages R and Python and on the computer algebra language Maxima, many new methods and examples scattered throughout the book and an update of all software-related procedures and a comprehensive book software providing templates for typical modeling tasks in thousands of code lines. The book software includes GmLinux, an operating system specifically designed for this book providing preconfigured and ready-to-use installations of OpenFOAM, Salome, FreeCAD/CfdOF workbench, ParaView, R, Maxima/wxMaxima, Python, Rstudio, Quarto/Markdown and other free of charge open source software used in the book.

0 von 0 Bewertungen

Durchschnittliche Bewertung von 0 von 5 Sternen

Bewerten Sie dieses Produkt!

Teilen Sie Ihre Erfahrungen mit anderen Kunden.


Das könnte Sie auch interessieren

Verwandte Artikel

slide 1 of 1