Zum Hauptinhalt springen Zur Suche springen Zur Hauptnavigation springen
Herzlich Willkommen!
Schweiz
  • Schweiz
  • Liechtenstein
  • Deutschland
  • Österreich
  • Vereinigtes Königreich
  • Griechenland
  • Irland
  • Island
  • Italien
  • Japan
  • Kanada
  • Luxemburg
  • Namibia
  • Niederlande
  • Norwegen
  • Portugal
  • Schweden
  • Spanien
  • Vereinigte Staaten von Amerika
  • Arabische Emirate
  • Polen
  • Ungarn
  • Türkei
  • Tschechische Republik
  • Slowakei
  • Rumänien
  • Brasilien
  • Israel
  • Australien
  • Belgien
  • Dänemark
  • Finnland
  • Frankreich
  • Bulgarien
  • Estland
  • Kroatien
  • Lettland
  • Litauen
  • Malta
  • Slowenien
  • Zypern
  • Afghanistan
  • Åland
  • Albanien
  • Algerien
  • Amerikanisch-Samoa
  • Andorra
  • Angola
  • Anguilla
  • Antarktika
  • Antigua und Barbuda
  • Argentinien
  • Armenien
  • Aruba
  • Aserbaidschan
  • Bahamas
  • Bahrain
  • Bangladesch
  • Barbados
  • Weißrussland
  • Belize
  • Benin
  • Bermuda
  • Bhutan
  • Bolivien
  • Bonaire, Sint Eustatius und Saba
  • Bosnien und Herzegowina
  • Botswana
  • Bouvetinsel
  • Britisches Territorium im Indischen Ozean
  • Kleinere Inselbesitzungen der Vereinigten Staaten
  • Britische Jungferninseln
  • Amerikanische Jungferninseln
  • Brunei
  • Burkina Faso
  • Burundi
  • Kambodscha
  • Kamerun
  • Kap Verde
  • Kaimaninseln
  • Zentralafrikanische Republik
  • Tschad
  • Chile
  • China
  • Weihnachtsinsel
  • Kokosinseln
  • Kolumbien
  • Union der Komoren
  • Kongo
  • Kongo (Dem. Rep.)
  • Cookinseln
  • Costa Rica
  • Kuba
  • Curaçao
  • Dschibuti
  • Dominica
  • Dominikanische Republik
  • Ecuador
  • Ägypten
  • El Salvador
  • Äquatorial-Guinea
  • Eritrea
  • Äthiopien
  • Falklandinseln
  • Färöer-Inseln
  • Fidschi
  • Französisch Guyana
  • Französisch-Polynesien
  • Französische Süd- und Antarktisgebiete
  • Gabun
  • Gambia
  • Georgien
  • Ghana
  • Gibraltar
  • Grönland
  • Grenada
  • Guadeloupe
  • Guam
  • Guatemala
  • Guernsey
  • Guinea
  • Guinea-Bissau
  • Guyana
  • Haiti
  • Heard und die McDonaldinseln
  • Staat Vatikanstadt
  • Honduras
  • Hong Kong
  • Indien
  • Indonesien
  • Elfenbeinküste
  • Iran
  • Irak
  • Insel Man
  • Jamaika
  • Jersey
  • Jordanien
  • Kasachstan
  • Kenia
  • Kiribati
  • Kuwait
  • Kirgisistan
  • Laos
  • Libanon
  • Lesotho
  • Liberia
  • Libyen
  • Macao
  • Mazedonien
  • Madagaskar
  • Malawi
  • Malaysia
  • Malediven
  • Mali
  • Marshallinseln
  • Martinique
  • Mauretanien
  • Mauritius
  • Mayotte
  • Mexiko
  • Mikronesien
  • Moldawie
  • Monaco
  • Mongolei
  • Montenegro
  • Montserrat
  • Marokko
  • Mosambik
  • Myanmar
  • Nauru
  • Népal
  • Neukaledonien
  • Neuseeland
  • Nicaragua
  • Niger
  • Nigeria
  • Niue
  • Norfolkinsel
  • Nordkorea
  • Nördliche Marianen
  • Oman
  • Pakistan
  • Palau
  • Palästina
  • Panama
  • Papua-Neuguinea
  • Paraguay
  • Peru
  • Philippinen
  • Pitcairn
  • Puerto Rico
  • Katar
  • Republik Kosovo
  • Réunion
  • Russland
  • Ruanda
  • Saint-Barthélemy
  • Sankt Helena
  • St. Kitts und Nevis
  • Saint Lucia
  • Saint Martin
  • Saint-Pierre und Miquelon
  • Saint Vincent und die Grenadinen
  • Samoa
  • San Marino
  • São Tomé und Príncipe
  • Saudi-Arabien
  • Senegal
  • Serbien
  • Seychellen
  • Sierra Leone
  • Singapur
  • Sint Maarten (niederl. Teil)
  • Salomonen
  • Somalia
  • Republik Südafrika
  • Südgeorgien und die Südlichen Sandwichinseln
  • Südkorea
  • Südsudan
  • Sri Lanka
  • Sudan
  • Suriname
  • Svalbard und Jan Mayen
  • Swasiland
  • Syrien
  • Taiwan
  • Tadschikistan
  • Tansania
  • Thailand
  • Timor-Leste
  • Togo
  • Tokelau
  • Tonga
  • Trinidad und Tobago
  • Tunesien
  • Turkmenistan
  • Turks- und Caicosinseln
  • Tuvalu
  • Uganda
  • Ukraine
  • Uruguay
  • Usbekistan
  • Vanuatu
  • Venezuela
  • Vietnam
  • Wallis und Futuna
  • Westsahara
  • Jemen
  • Sambia
  • Simbabwe
The increasing need to demonstrate structural safety has driven many recent advances in structural technology that require greater accuracy, efficiency and speed in the analysis of their systems. These new methods of analysis have to be sufficiently accurate to cope with complex and large-scale structures. In addition, there is also a growing need to achieve more efficient and optimal use of materials. Following on from the highly acclaimed and successful first edition, Optimal Structural Analysis now deals primarily with the analysis of structural engineering systems, with applicable methods to other types of structures. * Presents efficient and practical methods for optimal analysis of structures. * Provides a complete reference for many applications of graph theory, algebraic graph theory and matroids in computational structural mechanics. * Substantially revised to include recent developments and applications of the algebraic graph theory and matroids, which are ideally suited for modern computational techniques. * Describes recent developments in the matrix force methods of structural analysis. * Presents novel applications of graph products in structural mechanics. Optimal Structural Analysis will be of interest to post-graduate students in the fields of structures and mechanics, and applied mathematics particularly discrete mathematics. It will also appeal to practitioners developing programs for structures and finite element analysis.

2. A.
532 Seiten
Hardcover
Erscheinungsdatum 30.06.2006
ISBN 9780470030158

Ali Kaveh is Professor of Structural Engineering at Iran University of Science & Technology, Tehran. He has had over 200 papers published in international journals and conferences. He has held the position of Chief editor of the Asian Journal of Structural Engineering and was a member of the editorial board for 5 international journals and 3 national journals. His research interests include structural mechanics: graph and matrix methods, strength of materials, stability, finite elements and comptuer methods of structural analysis. He is the recipient of various awards, including: Press Media Prize; Educational Gold Medal; Kharuzmi Research Prize and the Alborz Prize; and his previous book "Structural Mechanics: Graph and Matrix Methods, 2nd Edition, 1995" won an award for the best engineering book of its year in Iran.
The increasing need to demonstrate structural safety has driven many recent advances in structural technology that require greater accuracy, efficiency and speed in the analysis of their systems. These new methods of analysis have to be sufficiently accurate to cope with complex and large-scale structures. In addition, there is also a growing need to achieve more efficient and optimal use of materials. Following on from the highly acclaimed and successful first edition, Optimal Structural Analysis now deals primarily with the analysis of structural engineering systems, with applicable methods to other types of structures. * Presents efficient and practical methods for optimal analysis of structures. * Provides a complete reference for many applications of graph theory, algebraic graph theory and matroids in computational structural mechanics. * Substantially revised to include recent developments and applications of the algebraic graph theory and matroids, which are ideally suited for modern computational techniques. * Describes recent developments in the matrix force methods of structural analysis. * Presents novel applications of graph products in structural mechanics. Optimal Structural Analysis will be of interest to post-graduate students in the fields of structures and mechanics, and applied mathematics particularly discrete mathematics. It will also appeal to practitioners developing programs for structures and finite element analysis.