Herzlich Willkommen!
This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.
Autor: Friedman, Jerome Hastie, Trevor Tibshirani, Robert
ISBN: 9780387848570
Auflage: 2
Sprache: Englisch
Seitenzahl: 745
Produktart: Gebunden
Verlag: Springer US
Veröffentlicht: 09.02.2009
Untertitel: Data Mining, Inference, and Prediction, Second Edition
Schlagworte: Averaging Boosting Projection pursuit Random Forest Support Vector Machine classification clustering data mining machine learning supervised learning

0 von 0 Bewertungen

Durchschnittliche Bewertung von 0 von 5 Sternen

Bewerten Sie dieses Produkt!

Teilen Sie Ihre Erfahrungen mit anderen Kunden.