Tropical and Logarithmic Methods in Enumerative Geometry
This book is based on the lectures given at the Oberwolfach Seminar held in Fall 2021. Logarithmic Gromov-Witten theory lies at the heart of modern approaches to mirror symmetry, but also opens up a number of new directions in enumerative geometry of a more classical flavour. Tropical geometry forms the calculus through which calculations in this subject are carried out. These notes cover the foundational aspects of this tropical calculus, geometric aspects of the degeneration formula for Gromov-Witten invariants, and the practical nuances of working with and enumerating tropical curves. Readers will get an assisted entry route to the subject, focusing on examples and explicit calculations.
Autor: | Cavalieri, Renzo Markwig, Hannah Ranganathan, Dhruv |
---|---|
ISBN: | 9783031394003 |
Sprache: | Englisch |
Seitenzahl: | 159 |
Produktart: | Kartoniert / Broschiert |
Verlag: | Springer International Publishing |
Veröffentlicht: | 02.10.2023 |
Schlagworte: | Caporaso-Harris Recursion Correspondence Theorems ELSV-Formula Enumerative Geometry Gromov-Witten Theory Hurwitz Theory Logarithmic Geometry Moduli Spaces Tropical Compactifications Tropical Geometry |
Anmelden